Structure of Gaseous Detonation Waves and Chemical Kinetics
نویسندگان
چکیده
منابع مشابه
Triple-point shear layers in gaseous detonation waves
Recent experiments have shown intriguing regions of intense luminescence or ‘hotspots’ in the vicinity of triple-point shear layers in propagating gaseous detonation waves. Localized explosions have also been observed to develop in these fronts. These features were observed in higher effective activation energy mixtures, but not in lower effective activation energy mixtures. The increased lead ...
متن کاملDetonation Waves and Propulsion
The possibility of using a detonation wave as the key combustion system for supersonic propulsion is examined. A brief review of propagating detonations is provided first. This review emphasizes the unique and unstable nature of the coupling between reaction zone and shock waves that characterize detonations. The theory of idealized, steady, oblique detonation waves and their reaction zone stru...
متن کاملNumerical Study of Blast Initiation of Detonation Using a Two Step Chemical Kinetics Model
The effect of chemical reactions on the blast initiation of detonation in gaseous media has been investigated in this paper. Analytical method is based on the numerical solution of onedimensional reactive Euler equations. So far, analyses on the blast initiation of detonation have modeled the combustion process as a one-step chemical reaction, which follows the Arrhenius rate law. Previous stud...
متن کاملPropagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium, and thus a constant Chapman Jo...
متن کاملPropagation and ignition of fast gasless detonation waves of phase or chemical transformation in condensed matter
Fast self sustained waves of chemical or phase transformations, observed in several contexts in condensed matter effectively result in “gasless detonation”. The phenomenon is modelled by coupling the reaction diffusion equation, describing chemical or phase transformations, and the wave equation, describing elastic perturbations. The coupling considered in this work involves (i) a dependence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Le Journal de Physique IV
سال: 1995
ISSN: 1155-4339
DOI: 10.1051/jp4:1995410